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Disclaimer

2

• This presentation targets a broad audience

• Most of the low level technical details have been skipped to simplify the flow

• For all the technical details, please refer to the paper below

• A. Srivastava and V. K. Prasanna, “Learning to Forecast and Forecasting to Learn 
from the COVID-19 Pandemic,” arXiv, April 2020

• https://arxiv.org/abs/2004.11372

• The results from COVID-19 spread analysis should be interpreted with caution from 
people with the appropriate technical background

https://arxiv.org/abs/2004.11372
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What Is Machine Learning?
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Definition 1: Field of study that 

gives computers the ability to learn 

without being explicitly programmed 

[A. Samuel ‘59]

Definition 2: A computer program 

that improves its performance at 

some task through experience

[T. Mitchel ‘97]



Examples Of Machine Learning Applications
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• Object recognition
• Recognize and tag objects 

in images

• Document classification
• Assign a topic to a 

document

• Spam Email Detection

• Other applications
• Anomaly detection

• Fraud Detection

• Playing games (e.g. Go)



Main Categories Of Machine Learning Algorithms
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• Classification
• Assign a category to each input item (e.g. assign 

documents to categories)

• For each input we get its output label

• Clustering
• Partition a list of input items into homogeneous groups

• For each input, we only get the group ID it belongs to, 
without any other label attached

• Regression
• Predict a real value for each input item (e.g. predict 

height based on weight)

• We get a curve that fits the data



Main Types Of Learning

9

• Supervised Learning
• The learner receives a set of "labelled" data that represent 

the correct answers (i.e. outputs) for each input
• data in the form: (input, correct output)

• E.g. classification and regression algorithms

• Unsupervised Learning
• The learner does not receive "labelled" data, and makes 

predictions for all unseen points
• data in the form: (input, ?)

• E.g. clustering algorithms

• Reinforcement Learning
• The learner actively interacts with (and potentially affects) the 

environment and receives an immediate reward for each 
action

• The learner maximizes the long-term reward received
• data in the form = (input, some output, reward for this 

output)
• e.g. an algorithm to play Tic-tac-toe



Important Machine Learning Terminology
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• Training
• The process of creating a machine learning algorithm

• Inference
• The process of using a trained machine learning algorithm to draw conclusions

• e.g. make a classification decision, or a real value prediction etc.

• Hyperparameters
• Parameters that are not determined by the learning algorithm, but rather specified 

as inputs to the learning algorithm, before learning begins

• Accuracy
• The ratio of correct predictions over all the predictions (e.g. in classification tasks)

• Mean Absolute Percentage Error (MAPE)
• The average percentage difference of the predicted

values from the correct ones (e.g. to assess regression quality)

• Root Mean Square Error (RMSE)
• Another common error metric like MAPE



Basics of Prediction
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• Prediction
• a statement about a future event

• e.g. predict the next value of a time-series

• Predictions can be classified as
• Short-term vs. Long-term, depending on the length of 

the prediction window
• e.g. next time epoch vs the next multiple epochs

• What is considered "short" or "long" also depends on 
the application and the data availability/aggregation 
process

• e.g. COVID-19 data are published once per day, so short-
term can be few days, and long-term can be > 1 week

• Uncertainty increases with the prediction horizon
• Nevertheless, both short and long term predictions can 

be very important for
• planning, resource allocation, policy making, and 

general decision making under uncertainty

COVID-19 Cases (Short-Term Horizon)

COVID-19 Cases (Long-Term Horizon)
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Temporal Ensemble Learning for Load Prediction 
in Smart Power Grids

13

Problem: Given historical power consumption data, predict future power consumption  

Key Observation: Daily Periodicity in 
Consumption Data
Methodology - Temporal Ensemble 
Learning
• Train Specialized models for specific 

time of day – Temporal Features
• Output a weighted sum of temporal 

features as predicted value -
Ensemble 

• ML Models – Kernel Regression (KR), 
Support Vector Regression (SVR)

Temporal Ensemble Models achieve high accuracy (1-2% error rate) compared with 
traditional prediction methods (ARIMA, NYISO, etc. which achieve ~5% error rate)



OReONet: Deep Convolutional Network for Oil 
Reservoir Optimization
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Steam job Candidate Selection

• Injecting steam increases 
well temperature → 
increases production

• Predict the benefit of steam 
jobs on wells 

• “benefit” = the gain 
obtainable from performing  
a steam job

Average gain of 
176% compared to 
124% achieved by 
on field operators



Internet Traffic Prediction
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• Predicting network traffic in short time scales is very 
important for

• Traffic engineering
• Power savings in Data Center or backbone ISP 

networks
• Improved Quality-of-Experience (QoE) at the end-

user

• Particularly useful during Covid-19 due to rapid 
multimedia growth (Zoom, Netflix, etc.)

• Developed clustering-based LSTM prediction models
• Groups network time-series into similarity groups and 

then model them with a specialized model for each 
group

• MAPE: 4% - 10% across real and simulated network 
traffic datasets

Internet Traffic Growth During Covid19

Raw Network 
Traffic Data

1

Clusters

2

K

...

LSTM 1

LSTM 2

LSTM K

Predictions

...
Feature 

Extraction

Flow Extraction
(various prefix sizes 
and time-epochs)



DARPA Grand Challenge – CHIKV (2014-2015)
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Heterogeneous infection rate 
model with human mobility

One of 10 winners of DARPA 
Grand Challenge 2015 for 
predicting CHIKV epidemic

CHIKV epidemic: Country-
level predictions. Weekly 
over 8 months, 55 countries

Ajitesh Srivastava, "Computing Cascades: How to Spread Rumors, Win Campaigns, 
Stop Violence and Predict Epidemics", PhD Thesis, USC August 2018
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Why Forecast?
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• Preparedness and resource management needs state/county/city level 
predictions:

- How many masks, testing kits, beds are needed tomorrow/next week at a given 
hospital

- How to distribute state/country resources across all the hospitals in a 
state/country

• How do we come out of “stay-at-home” order?

• Should some venues remain closed and some open, initially?

• Need accurate forecasts for simulation of future scenarios



Modeling Choices
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Model Type

Generative/ 
Epidemiological

SI/ SIR/ SIER /… SI-kJ𝜶

Bayesian 
Inference

ODE Numerical 
Solution

Linearization with 
weighted Least 

Squares

Hyperparameters Selection

Discriminative



SIR Model
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• SIR model has been used to study the spread of various infectious diseases 
such as measles, mumps, and rubella

• S: the number of susceptible

• I:  the number of infectious

• R: the number of recovered or deceased (or immune) individuals

https://en.wikipedia.org/wiki/Compartm
ental_models_in_epidemiology

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology


Heterogeneous Infection Rate with Human Mobility
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Travel spreadCommunity spread

Learning with weighted least square 
minimization

Decaying weights on past data



• Using data by March 21st including travel data 

Results: Short-term Predictions (1)
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• Using data by April 10th (not including travel)

Adaptive

Single curve 
fitting

Travel data 
improved 
the models



Results: Short-term Predictions (2)
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Measuring the Present, using the Past, through 
Predictions
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Objective: Asses the effects of a region’s 
effort to battle COVID-19, for example, 
contact reduction

Approach Idea: Model is adaptive, captures 
the changes → compare models

• Define 𝜏𝑝 ∝ σ𝛽𝑖
𝑝

for region 𝑝 with rate of 
infection defined using model parameters 
𝛽𝑖
𝑝

• Calculate 𝜏0
𝑝

for a reference date 𝑡0 and 𝜏1
𝑝

for 𝑡1 (𝑡1 > 𝑡0)

• Contact Reduction Score (CRS) defined as:  

𝜏0
𝑝
− 𝜏1

𝑝

𝜏0
𝑝

𝑡0: 𝜏0
𝑝

𝑡1: 𝜏1
𝑝



CRS for Global (March 21st-April 10th)
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CRS – higher implies better
Best CRS: Brazil, Worst CRS: Japan



Forecasts and “What-if”
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Scenarios Accounting for Unreported Cases
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• Model can capture unreported cases as an input from antibody studies

• With probability 𝛾 a COVID case is reported

• 𝛾 =
Reported Cases

Estimated Total Cases



The Role Of ML In Covid-19 Predictions
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• Traditional SIR models rely on simplified assumptions (e.g. no 
mobility) and numerical solutions to differential equations

• Cannot capture the complex mobility patterns and evolving 
trends

• Our approach is ML based
• Supports different infection rates depending on how 

many days one has been infected
• Learn optimal parameters β1, β2,…,βκ, and δ using Weighted 

Least Squares
• Introduced smoothing to avoid overfitting
• Adapt to rapid Covid-19 related policy changes that affect 

future data by using a forgetting factor α < 1 during training
• Give more weight to more recent data

• Leverage real mobility datasets (flight data)

• Thus, more accurate predictions can be achieved, 
outperforming the baselines

Infection rate

Mobility 
influence rate
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Forecasting Web Interface
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https://jaminche.github.io/COVID-19/

https://jaminche.github.io/COVID-19/


Predictions: Next Steps

31

• County/city/neighborhood level predictions

• Hybrid hyperparameter/parameter learning scheme
• Current approach: Each has its own or everyone uses the same 

hyperparameters

• Clusters of regions share hyperparameters and even parameters: Consider 
similar regions when data for given region is not enough

• Incorporating Unreported Cases



Beyond Predictions
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• Resource allocation
• Optimal distribution of test and protection resources

• Under continued lockdown

• Network diffusion/immunization
• How to limit mobility so the epidemic is contained

• …

• Lessons learned for the future
• Generalized models

• …
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Concluding Remarks
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• Good hyperparameter selection is 
critical

• Models should evolve with data
• Current decisions can affect future 

input data

• Feedback loop

• Need to retrain the models and 
adapt to changes

• Ensemble approach likely to be the 
best approach

• Combine the results from several 
models instead of one

Model 
Training and 
Predictions

decision making
Input data

current decisions affect 
the future input data
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Be Safe
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