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Outline

1. Survey of photovoltaic materials and small cells
2. Three generations of PV

3. Manufacturing technology for solar modules and
systems -- thin films rising...

4. Commercial growth of PV in the U.S. and the world
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Attainable cell efficiencies for AMO (solid line) and AM1.5 spectra (dashed line) and
best efficiencies achieved for several materials as single junctions. (Kazmerski 2006)



Pyramidal surtace with silicon
nitride antireflection layer
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Three types of commercial silicon wafer cells as described in the text.
~ . From Kazmerski 2006.a) Sun Power, b) BP Solar, c) Sanyo HIT cell




Second generation (thin-film) cells
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Fig. 4.2 Structure of the polycrystalline CIGS and CdTe cells.
From Noufi 2006.




Third generation concepts

- multijunction IlI-V
- organic




124 L.L. Kazmerski / Journal of Electron Spectroscopy and Related Phenomena 150 (2006) 105-135

Fig. 17. Cross-sections of triple-junction, high-efficiency solar cells: (a) lattice-matched design, (b) lattice-mismatched (metamorphoric), and (c) latt:
mismatched. thin_ inverted structure. ARC is the antireflection coating.



concentrators:
terrestrial
Implementation of high
efficiency cells




Conducting
glass electrode:

Ft mirror

Electrolyte with
redox mediator

(1" f157)

TiOs with
adsorbed dye




Organic Solar Cell (OSC)
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PV modules
- solar resource (U.S.)
- history of cost reductions
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from cell to module--
series integration




First Solar—the largest
U.S. module producer

(Began as Solar Cells Inc on the U.T. campus)

Module Production Capacity:

Ramped the first 25MW module
production line in Perrysburg, Ohio to
Its steady state volume in 2005

Added two additional 25MW production -


http://fs-0906/Image Library/Sunset at First Solar.JPG
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Production of solar modules in the U.S.

Company 2000 | 2001 2002 2003 2004 2005 2006 2007
SIElslelr s 39 47 52 62 42 35 35
Solarworld
BP Solar 21 25 31 13 14 22 25.6 27.7
United
Solar* 3 4 4 7 14 22 28 48
First Solar* 3 © 20 60 120
GE 25 18 22
AstroPower 18 26 30 17
Schott Solar 4 5 5 4 10 13 13 10




World PV Cell / Module Production (1988-2007)
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Electricity Prices (S/kw-hr)

El

ectricity price convergence —5to 6 years
(Source: Deutsche Bank 2007)

Solar PV industry outlook
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PV Module Production Experience (or “Learning”) Curve

from Tom Surek & Robt Margolis, Third World Conf. on PV Energy Conversion, Osaka, May, 2003
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(First Solar module production cost Q4 2007 = $1.13/W )



egallatts

PV produces electricity just when it is most needed!
electricity usage (NY State) vs. time of day
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...and sometimes grid electricity fails!

HY Electricity Systen Status
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Sunday, August 08, 2004 Cleveland Plain Dealer--
About 50 million people were affected, and the economic impact was
estimated at more than $6 billion in lost business and damages.
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Figure 7.2 The Effect of a Few Million PHEVs and 9% PV Power
on the California Electric Load in Mid-July

Dave Heidenreich, Exponential Solar (2007)
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Not only is the e-truck
charged with solar, it
can power up the
house for
emergencies...




PV, Wind and the Smart Grid

« Sensors and controls together with a communications
backbone can support bi-directional power flow and
help to reduce the need for base-load power
generation and dispatchable power.

« The smart grid can increase the penetration of solar
and wind and enable a lower carbon grid.

« Navigant Consulting is engaged in a major study of the
otential for and impacts of a PV smart grid to be
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A Solar Grand Plan

Ken Zweibel, James Mason, Vasilis Fthenakis
Scientific American, Dec. 16, 2007

* PV farms in the U.S. Southwest
[can use high efficiency, concentrating PV (CPV)]

* High Voltage Direct Current (HVDC) long-distance
transmission lines throughout the U.S. deliver power to
regional AC grid




recent developments

Battery storage--Xcel Energy has signed a contract to purchase a
battery from NGK Insulators Ltd. The 20 50-kilowatt NaS battery
modules will be able to store about 7.2 megawatt-hours of electricity,
with a charge/discharge power of one megawatt.

The project will take place in Luverne, Minn., about 30 miles east of
Sioux Falls, S.D., with the battery installation beginning this spring
adjacent and connected to a nearby 11-megawatt wind farm owned
by Minwind Energy, LLC. The battery is expected to go on-line in
October 2008.

« IBM announced Monday a joint venture with Tokyo Ohka Kogyo







Figure 1. Energy Payback for PV Systems
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Reaping the emaronmental benefits of solar energy requires spending energy fo
make the PV system. But as this graphic shows, the investment 1z small Assuming
30-year system Iife, PV systems will prowde a net gamn of 26 fo 29 years of pallu-
ton-free and greenhouse-gas-free electncal generabion.
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Figure § Stucnure for high-efficiency (30%:) orzame PV cell based
o1 3 napostructured substrate onto which thin layers of molecular
mult-pmetions are grown and anchorad onso the nanostrucnure
surface. The red circle denotes an electron acceptor; the blue squars,
aw electron donor; and the yvellow circle, a matal panopartcle.




